
Towards Modern Development of Cloud Applications
Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker

Parveen Patel, Ivan Posva, Amin Vahdat
Google

Abstract
When writing a distributed application, conventional wis-
dom says to split your application into separate services
that can be rolled out independently. This approach is well-
intentioned, but a microservices-based architecture like this
often backfires, introducing challenges that counteract the
benefits the architecture tries to achieve. Fundamentally, this
is because microservices conflate logical boundaries (how
code is written) with physical boundaries (how code is de-
ployed). In this paper, we propose a different programming
methodology that decouples the two in order to solve these
challenges. With our approach, developers write their appli-
cations as logical monoliths, offload the decisions of how to
distribute and run applications to an automated runtime, and
deploy applications atomically. Our prototype implementa-
tion reduces application latency by up to 15× and reduces
cost by up to 9× compared to the status quo.

CCS Concepts
• Computer systems organization→ Cloud computing;
Client-server architectures.

ACM Reference Format:
Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whit-
taker, Parveen Patel, Ivan Posva, Amin Vahdat. 2023. Towards Mod-
ern Development of Cloud Applications. In Workshop on Hot Topics
in Operating Systems (HOTOS ’23), June 22–24, 2023, Providence, RI,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3593856.3595909

1 Introduction
Cloud computing has seen unprecedented growth in recent
years. Writing and deploying distributed applications that
can scale up to millions of users has never been easier, in
large part due to frameworks like Kubernetes [25], messag-
ing solutions like [7, 18, 31, 33, 40, 60], and data formats

HOTOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595909

like [5, 6, 23, 30]. The prevailing wisdom when using these
technologies is to manually split your application into sepa-
rate microservices that can be rolled out independently.
Via an internal survey of various infrastructure teams,

we have found that most developers split their applications
into multiple binaries for one of the following reasons: (1)
It improves performance. Separate binaries can be scaled
independently, leading to better resource utilization. (2) It
improves fault tolerance. A crash in one microservice doesn’t
bring down other microservices, limiting the blast radius of
bugs. (3) It improves abstraction boundaries. Microservices
require clear and explicit APIs, and the chance of code en-
tanglement is severely minimized. (4) It allows for flexible
rollouts. Different binaries can be released at different rates,
leading to more agile code upgrades.
However, splitting applications into independently de-

ployable microservices is not without its challenges, some
of which directly contradict the benefits.
• C1: It hurts performance. The overhead of serializing
data and sending it across the network is increasingly
becoming a bottleneck [72]. When developers over-split
their applications, these overheads compound [55].

• C2: It hurts correctness. It is extremely challenging to
reason about the interactions between every deployed
version of every microservice. In a case study of over
100 catastrophic failures of eight widely used systems,
two-thirds of failures were caused by the interactions
between multiple versions of a system [78].

• C3: It is hard to manage. Rather than having a single bi-
nary to build, test, and deploy, developers have tomanage
𝑛 different binaries, each on their own release schedule.
Running end-to-end tests with a local instance of the
application becomes an engineering feat.

• C4: It freezes APIs. Once a microservice establishes an
API, it becomes hard to change without breaking the
other services that consume the API. Legacy APIs linger
around, and new APIs are patched on top.

• C5: It slows down application development. When mak-
ing changes that affect multiple microservices, develop-
ers cannot implement and deploy the changes atomically.
They have to carefully plan how to introduce the change
across 𝑛 microservices with their own release schedules.
In our experience, we have found that an overwhelming

number of developers view the above challenges as a neces-
sary part of doing business. Many cloud-native companies

110

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3593856.3595909
https://doi.org/10.1145/3593856.3595909
https://doi.org/10.1145/3593856.3595909
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593856.3595909&domain=pdf&date_stamp=2023-06-22

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker et al.

are in fact developing internal frameworks and processes
that aim to ease some of the above challenges, but not funda-
mentally change or eliminate them altogether. For example,
continuous deployment frameworks [12, 22, 37] simplify how
individual binaries are built and pushed into production, but
they do nothing to solve the versioning issue; if anything,
they make it worse, as code is pushed into production at a
faster rate. Various programming libraries [13, 27] make it
easier to create and discover network endpoints, but do noth-
ing to help ease application management. Network protocols
like gRPC [18] and data formats like Protocol Buffers [30]
are continually improved, but still take up a major fraction
of an application’s execution cost.

There are two reasons why these microservice-based solu-
tions fall short of solving challenges C1-C5. The first reason
is that they all assume that the developermanually splits their
application into multiple binaries. This means that the net-
work layout of the application is predetermined by the appli-
cation developer. Moreover, once made, the network layout
becomes hardened by the addition of networking code into
the application (e.g., network endpoints, client/server stubs,
network-optimized data structures like [30]). This means
that it becomes harder to undo or modify the splits, even
when it makes sense to do so. This implicitly contributes to
the challenges C1, C2 and C4 mentioned above.

The second reason is the assumption that application bina-
ries are individually (and in some cases continually) released
into production. This makes it more difficult to make changes
to the cross-binary protocol. Additionally, it introduces ver-
sioning issues and forces the use of more inefficient data
formats like [23, 30]. This in turn contributes to the chal-
lenges C1-C5 listed above.
In this paper, we propose a different way of writing and

deploying distributed applications, one that solves C1-C5.
Our programming methodology consists of three core tenets:

(1) Writemonolithic applications that are modularized
into logically distinct components.

(2) Leverage a runtime to dynamically and automatically
assign logical components to physical processes
based on execution characteristics.

(3) Deploy applications atomically, preventing differ-
ent versions of an application from interacting.

Other solutions (e.g., actor based systems) have also tried
to raise the abstraction. However, they fall short of solving
one or more of these challenges (Section 7). Though these
challenges and our proposal are discussed in the context of
serving applications, we believe that our observations and
solutions are broadly useful.

2 Proposed Solution
The two main parts of our proposal are (1) a programming
model with abstractions that allow developers to write single-
binary modular applications focused solely on business logic,
and (2) a runtime for building, deploying, and optimizing
these applications.
The programming model enables a developer to write a

distributed application as a single program, where the code is
split into modular units called components (Section 3). This
is similar to splitting an application into microservices, ex-
cept that microservices conflate logical and physical bound-
aries. Our solution instead decouples the two: components
are centered around logical boundaries based on application
business logic, and the runtime is centered around physi-
cal boundaries based on application performance (e.g., two
components should be co-located to improve performance).
This decoupling—along with the fact that boundaries can be
changed atomically—addresses C4.

By delegating all execution responsibilities to the runtime,
our solution is able to provide the same benefits as microser-
vices but with much higher performance and reduced costs
(addresses C1). For example, the runtime makes decisions on
how to run, place, replicate, and scale components (Section 4).
Because applications are deployed atomically, the runtime
has a bird’s eye view into the application’s execution, en-
abling further optimizations. For example, the runtime can
use custom serialization and transport protocols that lever-
age the fact that all participants execute at the same version.

Writing an application as a single binary and deploying it
atomically also makes it easier to reason about its correctness
(addresses C2) and makes the application easier to manage
(addresses C3). Our proposal provides developers with a pro-
grammingmodel that lets them focus on application business
logic, delegating deployment complexities to a runtime (ad-
dresses C5). Finally, our proposal enables future innovations
like automated testing of distributed applications (Section 5).

3 Programming Model

3.1 Components

The key abstraction of our proposal is the component. A
component is a long-lived, replicated computational agent,
similar to an actor [2]. Each component implements an in-
terface, and the only way to interact with a component is by
calling methods on its interface. Components may be hosted
by different OS processes (perhaps across many machines).
Component method invocations turn into remote procedure
calls where necessary, but remain local procedure calls if the
caller and callee component are in the same process.
Components are illustrated in Figure 1. The example ap-

plication has three components:𝐴, 𝐵, and𝐶 . When the appli-
cation is deployed, the runtime determines how to co-locate

111

Towards Modern Development of Cloud Applications HOTOS ’23, June 22–24, 2023, Providence, RI, USA

component A
component B
component C

Application
Machine 1

Machine 2 Machine 3

A

B

C C

local

RPC RPC

Figure 1: An illustration of how components are written and
deployed. An application is written as a set of components
(left) and deployed across machines (right). Note that com-
ponents can be replicated and co-located.

and replicate components. In this example, components 𝐴
and 𝐵 are co-located in the same OS process, and method
calls between them are executed as regular method calls.
Component 𝐶 is not co-located with any other component
and is replicated across two machines. Method calls on𝐶 are
executed as RPCs over the network.

Components are generally long-lived, but the runtimemay
scale up or scale down the number of replicas of a component
over time based on load. Similarly, component replicas may
fail and get restarted. The runtimemay alsomove component
replicas around, e.g., to co-locate two chatty components in
the same OS process so that communication between the
components is done locally rather than over the network.

3.2 API

For the sake of concreteness, we present a component API
in Go, though our ideas are language-agnostic. A “Hello,
World!" application is given in Figure 2. Component inter-
faces are represented as Go interfaces, and component im-
plementations are represented as Go structs that implement
these interfaces. In Figure 2, the hello struct embeds the
Implements[Hello] struct to signal that it is the implemen-
tation of the Hello component.

Init initializes the application. Get[Hello] returns a
client to the component with interface Hello, creating it
if necessary. The call to hello.Greet looks like a regular
method call. Any serialization and remote procedure calls
are abstracted away from the developer.

4 Runtime

4.1 Overview

Underneath the programming model lies a runtime that is
responsible for distributing and executing components. The
runtime makes all high-level decisions on how to run compo-
nents. For example, it decides which components to co-locate
and replicate. The runtime is also responsible for low-level

// Component interface.
type Hello interface {

Greet(name string) string
}

// Component implementation.
type hello struct {

Implements[Hello]
}
func (h *hello) Greet(name string) string {

return fmt.Sprintf("Hello, %s!", name)
}

// Component invocation.
func main() {

app := Init()
hello := Get[Hello](app)
fmt.Println(hello.Greet("World"))

}

Figure 2: A “Hello, World!" application.

details like launching components onto physical resources
and restarting components when they fail. Finally, the run-
time is responsible for performing atomic rollouts, ensuring
that components in one version of an application never com-
municate with components in a different version.

There are many ways to implement a runtime. The goal of
this paper is not to prescribe any particular implementation.
Still, it is important to recognize that the runtime is not
magical. In the rest of this section, we outline the key pieces
of the runtime and demystify its inner workings.

4.2 Code Generation

The first responsibility of the runtime is code generation. By
inspecting the Implements[T] embeddings in a program’s
source code, the code generator computes the set of all com-
ponent interfaces and implementations. It then generates
code to marshal and unmarshal arguments to component
methods. It also generates code to execute these methods
as remote procedure calls. The generated code is compiled
along with the developer’s code into a single binary.

4.3 Application-Runtime Interaction

With our proposal, applications do not include any code
specific to the environment in which they are deployed, yet
they must ultimately be run and integrated into a specific
environment (e.g., across machines in an on-premises cluster
or across regions in a public cloud). To support this integra-
tion, we introduce an API (partially outlined in Table 1) that
isolates application logic from the details of the environment.

The caller of the API is a proclet. Every application binary
runs a small, environment-agnostic daemon called a proclet
that is linked into the binary during compilation. A proclet

112

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker et al.

API Description

RegisterReplica Register a proclet as alive and ready.
StartComponent Start a component, potentially in another process.
ComponentsToHost Get components a proclet should host.

Table 1: Example API between the application and runtime.

manages the components in a running binary. It runs them,
starts them, stops them, restarts them on failure, etc.
The implementer of the API is the runtime, which is re-

sponsible for all control plane operations. The runtime de-
cides how and where proclets should run. For example, a
multiprocess runtime may run every proclet in a subpro-
cess; an SSH runtime may run proclets via SSH; and a cloud
runtime may run proclets as Kubernetes pods [25, 28].

Concretely, proclets interact with the runtime over a Unix
pipe. For example, when a proclet is constructed, it sends
a RegisterReplica message over the pipe to mark itself
as alive and ready. It periodically issues ComponentsToHost
requests to learn which components it should run. If a com-
ponent calls a method on a different component, the proclet
issues a StartComponent request to ensure it is started.

The runtime implements these APIs in a way that makes
sense for the deployment environment. We expect most run-
time implementations to contain the following two pieces:
(1) a set of envelope processes that communicate directly
with proclets via UNIX pipes, and (2) a global manager that
orchestrates the execution of the proclets (see Figure 3).

OS Processes
Containers

Servers VMs Pods

 Envelope Envelope

GKE

AWS

Azure

Cloudlab

Web UI

Profiling Tools

Debugging Tools

E2E Testing Tools

A
pp

lic
at

io
n

E
xe

cu
tio

n
D

ep
lo

ym
en

t/M
an

ag
em

en
t

Global Manager
Generates distributed code
Integration with Cloud APIs
Rollouts
Scaling
Colocation
Placement
Metrics, traces, logs

A
B

 proclet

C
 proclet

Figure 3: Proposed Deployer Architecture.

An envelope runs as the parent process to a proclet and
relays API calls to the manager. The manager launches en-
velopes and (indirectly) proclets across the set of available
resources (e.g., servers, VMs). Throughout the lifetime of
the application, the manager interacts with the envelopes
to collect health and load information of the running com-
ponents; to aggregate metrics, logs, and traces exported by

the components; and to handle requests to start new compo-
nents. The manager also issues environment-specific APIs
(e.g., Google Cloud [16], AWS [4]) to update traffic assign-
ments and to scale up and down components based on load,
health, and performance constraints. Note that the runtime
implements the control plane but not the data plane. Proclets
communicate directly with one another.

4.4 Atomic Rollouts

Developers inevitably have to release new versions of their
application. A widely used approach is to perform rolling
updates, where the machines in a deployment are updated
from the old version to the new version one by one. During
a rolling update, machines running different versions of the
code have to communicate with each other, which can lead
to failures. [78] shows that the majority of update failures
are caused by these cross-version interactions.
To address these complexities, we propose a different ap-

proach. The runtime ensures that application versions are
rolled out atomically, meaning that all component commu-
nication occurs within a single version of the application.
The runtime gradually shifts traffic from the old version to
the new version, but once a user request is forwarded to a
specific version, it is processed entirely within that version.
One popular implementation of atomic rollouts is the use of
blue/green deployments [9].

5 Enabled Innovations

5.1 Transport, Placement, and Scaling

The runtime has a bird’s-eye view into application execution,
which enables new avenues to optimize performance. For
example, our framework can construct a fine-grained call
graph between components and use it to identify the critical
path, the bottleneck components, the chatty components, etc.
Using this information, the runtime can make smarter scal-
ing, placement, and co-location decisions. Moreover, because
serialization and transport are abstracted from the developer,
the runtime is free to optimize them. For network bottle-
necked applications, for example, the runtime may decide
to compress messages on the wire. For certain deployments,
the transport may leverage technologies like RDMA [32].

5.2 Routing

The performance of some components improves greatly
when requests are routed with affinity. For example, consider
an in-memory cache component backed by an underlying
disk-based storage system. The cache hit rate and overall per-
formance increase when requests for the same key are routed
to the same cache replica. Slicer [44] showed that many ap-
plications can benefit from this type of affinity based routing
and that the routing is most efficient when embedded in
the application itself [43]. Our programming framework can

113

Towards Modern Development of Cloud Applications HOTOS ’23, June 22–24, 2023, Providence, RI, USA

be naturally extended to include a routing API. The run-
time could also learn which methods benefit the most from
routing and route them automatically.

5.3 Automated Testing

One of the touted benefits of microservice architectures is
fault-tolerance. The idea is that if one service in an applica-
tion fails, the functionality of the application degrades but
the app as a whole remains available. This is great in theory,
but in practice it relies on the developer to ensure that their
application is resilient to failures and, more importantly, to
test that their failure-handling logic is correct. Testing is
particularly challenging due to the overhead in building and
running 𝑛 different microservices, systematically failing and
restoring them, and checking for correct behavior. As a re-
sult, only a fraction of microservice-based systems are tested
for this type of fault tolerance. With our proposal, it is trivial
to run end-to-end tests. Because applications are written as
single binaries in a single programming language, end-to-
end tests become simple unit tests. This opens the door to
automated fault tolerance testing, akin to chaos testing [47],
Jepsen testing [14], and model checking [62].

5.4 Stateful Rollouts

Our proposal ensures that components in one version of an
application never communicate with components in a dif-
ferent version. This makes it easier for developers to reason
about correctness. However, if an application updates state
in a persistent storage system, like a database, then different
versions of an application will indirectly influence each other
via the data they read and write. These cross-version interac-
tions are unavoidable—persistent state, by definition, persists
across versions—but an open question remains about how
to test these interactions and identify bugs early to avoid
catastrophic failures during rollout.

5.5 Discussion

Note that innovation in the areas discussed in this section is
not fundamentally unique to our proposal. There has been ex-
tensive research on transport protocols [63, 64], routing [44,
65], testing [45, 75], resource management [57, 67, 71], trou-
bleshooting [54, 56], etc. However, the unique features of
our programming model enable new innovations and make
existing innovations much easier to implement.

For instance, by leveraging the atomic rollouts in our pro-
posal, we can design highly-efficient serialization protocols
that can safely assume that all participants are using the same
schema. Additionally, our programming model makes it easy
to embed routing logic directly into a user’s application,
providing a range of benefits [43]. Similarly, our proposal’s
ability to provide a bird’s eye view of the application allows

researchers to focus on developing new solutions for tuning
applications and reducing deployment costs.

6 Prototype Implementation
Our prototype implementation is written in Go [38] and in-
cludes the component APIs described in Figure 2, the code
generator described in Section 4.2, and the proclet architec-
ture described in Section 4.3. The implementation uses a
custom serialization format and a custom transport protocol
built directly on top of TCP. The prototype also comes with
a Google Kubernetes Engine (GKE) deployer, which imple-
ments multi-region deployments with gradual blue/green
rollouts. It uses Horizontal Pod Autoscalers [20] to dynami-
cally adjust the number of container replicas based on load
and follows an architecture similar to that in Figure 3. Our
implementation is available at github.com/ServiceWeaver.
6.1 Evaluation

To evaluate our prototype, we used a popular web applica-
tion [41] representative of the kinds of microservice applica-
tions developers write. The application has eleven microser-
vices and uses gRPC [18] and Kubernetes [25] to deploy on
the cloud. The application is written in various programming
languages, so for a fair comparison, we ported the application
to be written fully in Go. We then ported the application to
our prototype, with each microservice rewritten as a compo-
nent. We used Locust [26], a workload generator, to load-test
the application with and without our prototype.
The workload generator sends a steady rate of HTTP

requests to the applications. Both application versions were
configured to auto-scale the number of container replicas
in response to load. We measured the number of CPU cores
used by the application versions in a steady state, as well as
their end-to-end latencies. Table 2 shows our results.

Metric Our Prototype Baseline

QPS 10000 10000
Average Number of Cores 28 78
Median Latency (ms) 2.66 5.47

Table 2: Performance Results.

Most of the performance benefits of our prototype come
from its use of a custom serialization format designed for non-
versioned data exchange, as well as its use of a streamlined
transport protocol built directly on top of TCP. For example,
the serialization format used does not require any encoding
of field numbers or type information. This is because all
encoders and decoders run at the exact same version and
agree on the set of fields and the order in which they should
be encoded and decoded in advance.
For an apples-to-apples comparison to the baseline, we

did not co-locate any components. When we co-locate all

114

https://github.com/ServiceWeaver

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker et al.

eleven components into a single OS process, the number of
cores drops to 9 and the median latency drops to 0.38 ms,
both an order of magnitude lower than the baseline. This
mirrors industry experience [34, 39].

7 Related Work

Actor Systems. The closest solutions to our proposal are
Orleans [74] and Akka [3]. These frameworks also use ab-
stractions to decouple the application and runtime. Ray [70]
is another actor based framework but is focused on ML ap-
plications. None of these systems support atomic rollouts,
which is a necessary component to fully address challenges
C2-C5. Other popular actor based frameworks such as Er-
lang [61], E [52], Thorn [48] and C++ Actor Framework [10]
put the burden on the developer to deal with system and
low level details regarding deployment and execution, hence
they fail to decouple the concerns between the application
and the runtime and therefore don’t fully address C1-C5.
Distributed object frameworks like CORBA, DCOM, and Java
RMI use a programming model similar to ours but suffered
from a number of technical and organizational issues [58]
and don’t fully address C1-C5 either.

Microservice Based Systems. Kubernetes [25] is widely
used for deploying container based applications in the cloud.
However, its focus is orthogonal to our proposal and doesn’t
address any of C1-C5. Docker Compose [15], Acorn [1],
Helm [19], Skaffold [35], and Istio [21] abstract away some
microservice challenges (e.g., configuration generation). How-
ever, challenges related to splitting an application into mi-
croservices, versioned rollouts, and testing are still left to
the user. Hence, they don’t satisfy C1-C5.

Other Systems. There aremany other solutions thatmake
it easier for developers to write distributed applications, in-
cluding dataflow systems [51, 59, 77], ML inference serving
systems [8, 17, 42, 50, 73], serverless solutions [11, 24, 36],
databases [29, 49], and web applications [66]. More recently,
service meshes [46, 69] have raised networking abstractions
to factor out common communication functionality. Our pro-
posal embodies these same ideas but in a new domain of
general serving systems and distributed applications. In this
context, new challenges arise (e.g., atomic rollouts).

8 Discussion

8.1 Multiple Application Binaries

We argue that applications should be written and built as
single binaries, but we acknowledge that this may not al-
ways be feasible. For example, the size of an application
may exceed the capabilities of a single team, or different
application services may require distinct release cycles for
organizational reasons. In all such cases, it may be necessary
for the application to consist of multiple binaries.

While this paper doesn’t address the cases where the use
of multiple binaries is required, we believe that our proposal
allows developers to write fewer binaries (i.e. by grouping
multiple services into single binaries whenever possible),
achieve better performance, and postpone hard decisions
related to how to partition the application. We are explor-
ing how to accommodate applications written in multiple
languages and compiled into separate binaries.

8.2 Integration with External Services

Applications often need to interact with external services
(e.g., a Postgres database [29]). Our programming model
allows applications to interact with these services as any
application would. Not anything and everything has to be a
component. However, when an external service is extensively
used within and across applications, defining a correspond-
ing component might provide better code reuse.

8.3 Distributed Systems Challenges

While our programming model allows developers to focus
on their business logic and defer a lot of the complexity of
deploying their applications to a runtime, our proposal does
not solve fundamental challenges of distributed systems [53,
68, 76]. Application developers still need to be aware that
components may fail or experience high latency.

8.4 Programming Guidance

There is no official guidance on how to write distributed
applications, hence it’s been a long and heated debate on
whether writing applications as monoliths or microservices
is a better choice. However, each approach comes with its
own pros and cons. We argue that developers should write
their application as a single binary using our proposal and de-
cide laterwhether they really need tomove to amicroservices-
based architecture. By postponing the decision of how ex-
actly to split into different microservices, it allows them to
write fewer and better microservices.

9 Conclusion
The status quo when writing distributed applications in-
volves splitting applications into independently deployable
services. This architecture has a number of benefits but also
many shortcomings. In this paper, we propose a different
programming paradigm that sidesteps these shortcomings.
Our proposal encourages developers to (1) write monolithic
applications divided into logical components, (2) defer to a
runtime the challenge of physically distributing and execut-
ing the modularized monoliths, and (3) deploy applications
atomically. These three guiding principles unlock a number
of benefits and open the door to a bevy of future innovation.
Our prototype implementation reduced application latency
by up to 15× and reduced cost by up to 9× compared to the
status quo.

115

Towards Modern Development of Cloud Applications HOTOS ’23, June 22–24, 2023, Providence, RI, USA

References

[1] Acorn. https://www.acorn.io/.
[2] Actor model. https://en.wikipedia.org/wiki/Actor_model.
[3] Akka. https://akka.io.
[4] Amazon Web Services. https://aws.amazon.com/.
[5] Apache avro. https://avro.apache.org/docs/1.2.0/.
[6] Apache thrift. https://thrift.apache.org/.
[7] AWS Cloud Map. https://aws.amazon.com/cloud-map/.
[8] Azure Machine Learning. https://docs.microsoft.com/en-us/azure/

machine-learning.
[9] Blue/green deployments. https://tinyurl.com/3bk64ch2.
[10] The c++ actor framework. https://www.actor-framework.org/.
[11] Cloudflare Workers. https://workers.cloudflare.com/.
[12] Continuous integration and delivery - circleci. https://circleci.com/.
[13] Dapr - distributed application runtime. https://dapr.io/.
[14] Distributed systems safety research. https://jespen.io.
[15] Docker compose. https://docs.docker.com/compose/.
[16] Google Cloud. https://cloud.google.com/.
[17] Google Cloud AI Platform. https://cloud.google.com/ai-platform.
[18] grpc. https://grpc.io/.
[19] Helm. http://helm.sh.
[20] Horizontal Pod Autoscaling. https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/.
[21] Istio. https://istio.io/.
[22] Jenkins. https://www.jenkins.io/.
[23] Json. https://www.json.org/json-en.html.
[24] Kalix. https://www.kalix.io/.
[25] Kubernetes. https://kubernetes.io/.
[26] Locust. https://locust.io/.
[27] Micro | powering the future of cloud. https://micro.dev/.
[28] Pods. https://kubernetes.io/docs/concepts/workloads/pods/.
[29] Postgresql. https://www.postgresql.org/.
[30] Protocol buffers. https://developers.google.com/protocol-buffers.
[31] RabbitMQ. https://www.rabbitmq.com/.
[32] Remote direct memory access. https://en.wikipedia.org/wiki/Remote_

direct_memory_access.
[33] REST API. https://restfulapi.net/.
[34] Scaling up the Prime Video audio/video monitoring service and reduc-

ing costs by 90%. https://tinyurl.com/yt6nxt63.
[35] Skaffold. https://skaffold.dev/.
[36] Temporal. https://temporal.io/.
[37] Terraform. https://www.terraform.io/.
[38] The Go programming language. https://go.dev/.
[39] To Microservices and Back Again - Why Segment Went Back to a

Monolith. https://tinyurl.com/5932ce5n.
[40] WebSocket. https://en.wikipedia.org/wiki/WebSocket.
[41] Online boutique. https://github.com/GoogleCloudPlatform/

microservices-demo, 2023.
[42] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. In OSDI, 2016.

[43] A. Adya, R. Grandl, D. Myers, and H. Qin. Fast key-value stores: An
idea whose time has come and gone. In HotOS, 2019.

[44] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger,
P. Gu, L. Bhuvanagiri, J. Hunter, R. Peon, L. Kai, A. Shraer, A. Merchant,
and K. Lev-Ari. Slicer: Auto-sharding for datacenter applications. In
OSDI, 2016.

[45] D. Ardelean, A. Diwan, and C. Erdman. Performance analysis of cloud
applications. In NSDI, 2018.

[46] S. Ashok, P. B. Godfrey, and R. Mittal. Leveraging service meshes as a
new network layer. In HotNets, 2021.

[47] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal. Chaos engineering. In IEEE Software,
2016.

[48] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša,
J. Vitek, and T. Wrigstad. Thorn: Robust, concurrent, extensible script-
ing on the jvm. In OOPSLA, 2009.

[49] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford. Spanner: Google’s globally-distributed database. In
OSDI, 2012.

[50] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica. Clipper: A low-latency online prediction serving system. In
NSDI, 2017.

[51] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, 2004.

[52] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy approach.
In Proceedings of the IEEE, 2003.

[53] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. In ACM Journal, 1985.

[54] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage: Practical
and Scalable ML-Driven Performance Debugging in Microservices. In
ASPLOS, 2021.

[55] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems. In ASPLOS, 2019.

[56] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. De-
limitrou. Seer: Leveraging Big Data to Navigate the Complexity of
Performance Debugging in Cloud Microservices. In ASPLOS, 2019.

[57] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In SIGCOMM, 2014.

[58] M. Henning. The rise and fall of corba: There’s a lot we can learn from
corba’s mistakes. In Queue, 2006.

[59] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Eurosys,
2007.

[60] K. Jay, N. Neha, and R. Jun. Kafka : a distributed messaging system for
log processing. In NetDB, 2011.

[61] A. Joe. Erlang. In Communications of the ACM, 2010.
[62] L. Lamport. The temporal logic of actions. In ACM TOPLS, 1994.
[63] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,

F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind,
J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T.
Chang, and Z. Shi. The quic transport protocol: Design and internet-
scale deployment. In SIGCOMM, 2017.

[64] N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delimitrou. Dagger:
Towards Efficient RPCs in Cloud Microservices with Near-Memory
Reconfigurable NICs. In ASPLOS, 2021.

[65] S. Lee, Z. Guo, O. Sunercan, J. Ying, T. Kooburat, S. Biswal, J. Chen,
K. Huang, Y. Cheung, Y. Zhou, K. Veeraraghavan, B. Damani, P. M. Ruiz,
V. Mehta, and C. Tang. Shard manager: A generic shard management
framework for geo-distributed applications. In SOSP, 2021.

[66] B. Livshits and E. Kiciman. Doloto: Code splitting for network-bound
web 2.0 applications. In FSE, 2008.

[67] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu.
Characterizing microservice dependency and performance: Alibaba
trace analysis. In SOCC, 2021.

116

https://www.acorn.io/
https://en.wikipedia.org/wiki/Actor_model
https://akka.io
https://aws.amazon.com/
https://avro.apache.org/docs/1.2.0/
https://thrift.apache.org/
https://aws.amazon.com/cloud-map/
https://docs.microsoft.com/en-us/azure/machine-learning
https://docs.microsoft.com/en-us/azure/machine-learning
https://tinyurl.com/3bk64ch2
https://www.actor-framework.org/
https://workers.cloudflare.com/
https://circleci.com/
https://dapr.io/
https://jespen.io
https://docs.docker.com/compose/
https://cloud.google.com/
https://cloud.google.com/ai-platform
https://grpc.io/
http://helm.sh
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://istio.io/
https://www.jenkins.io/
https://www.json.org/json-en.html
https://www.kalix.io/
https://kubernetes.io/
https://locust.io/
https://micro.dev/
https://kubernetes.io/docs/concepts/workloads/pods/
https://www.postgresql.org/
https://developers.google.com/protocol-buffers
https://www.rabbitmq.com/
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://restfulapi.net/
https://tinyurl.com/yt6nxt63
https://skaffold.dev/
https://temporal.io/
https://www.terraform.io/
https://go.dev/
https://tinyurl.com/5932ce5n
https://en.wikipedia.org/wiki/WebSocket
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

HOTOS ’23, June 22–24, 2023, Providence, RI, USA Sanjay Ghemawat, Robert Grandl, Srdjan Petrovic, Michael Whittaker et al.

[68] N. A. Lynch. Distributed algorithms. In Morgan Kaufmann Publishers
Inc., 1996.

[69] S. McClure, S. Ratnasamy, D. Bansal, and J. Padhye. Rethinking net-
working abstractions for cloud tenants. In HotOS, 2021.

[70] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Eli-
bol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed
framework for emerging ai applications. In OSDI, 2018.

[71] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer. FIRM:
An intelligent fine-grained resource management framework for SLO-
Oriented microservices. In OSDI, 2020.

[72] D. Raghavan, P. Levis, M. Zaharia, and I. Zhang. Breakfast of champi-
ons: towards zero-copy serialization with nic scatter-gather. In HotOS,
2021.

[73] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis. Infaas: Automated
model-less inference serving. In ATC, 2021.

[74] B. Sergey, G. Allan, K. Gabriel, L. James, P. Ravi, and T. Jorgen. Orleans:
Cloud computing for everyong. In SOCC, 2011.

[75] M. Waseem, P. Liang, G. Márquez, and A. D. Salle. Testing microser-
vices architecture-based applications: A systematic mapping study. In
APSEC, 2020.

[76] Wikipedia contributors. Fallacies of distributed computing.
[77] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In NSDI,
2012.

[78] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and D. Yuan.
Understanding and detecting software upgrade failures in distributed
systems. In SOSP, 2021.

117

	Abstract
	1 Introduction
	2 Proposed Solution
	3 Programming Model
	3.1 Components
	3.2 API

	4 Runtime
	4.1 Overview
	4.2 Code Generation
	4.3 Application-Runtime Interaction
	4.4 Atomic Rollouts

	5 Enabled Innovations
	5.1 Transport, Placement, and Scaling
	5.2 Routing
	5.3 Automated Testing
	5.4 Stateful Rollouts
	5.5 Discussion

	6 Prototype Implementation
	6.1 Evaluation

	7 Related Work
	8 Discussion
	8.1 Multiple Application Binaries
	8.2 Integration with External Services
	8.3 Distributed Systems Challenges
	8.4 Programming Guidance

	9 Conclusion
	References

